内网登录 | ARP登录 | 邮箱登录 | 中国科学院 | 网站地图 | 联系我们
     ENGLISH

人才详细信息

姓名:张 臻
性别:
学历:博士
专家类别:研究员/优青
电话:
传真:010-8409 7079
电子邮箱:zhenzhang@tpestations.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号(中国科学院青藏高原研究所)

简介

个人简介:

张臻,博士,中国科学院青藏高原研究所研究员,长期从事全球甲烷收支及其相关的观测、机理和模拟研究。目前共发表SCI论文70余篇,其中部分成果发表在Nature, Nature Climate Change, Nature Communications, National Science Reviews, PNAS等高显示度期刊,有多篇论文被列为高引用文章,并被包括IPCC第六次报告、美国国家第二次气候变化评估报告等多篇权威文献所引用及选为代表性成果参与联合国气候大会COP23。他担任包括Nature Climate Change,Nature Communications, Science Advances,Global Change Biology,Global Biogeochemical Cycle等多个综合及领域主要期刊的审稿人。 现主要参与甲烷研究领域内影响力最大的全球碳计划甲烷项目,并担任其中的多陆地生态模型集合模拟试验的协调及模拟工作,同时参构建全球第一个甲烷排放通量观测数据集以及主持美国地质调查局鲍威尔研究中心的第五工作组陆地湿地甲烷模型集合模拟的交叉验证工作。

教育背景

2009-2013   博士,南京大学地理学专业

2006-2009   硕士,南京农业大学地理信息系统专业

2002-2006   学士,南京气象学院地理信息系统专业

学术任职经历

2023-至今   中国科学院青藏高原研究所   研究员

2017-至今   瑞士联邦森林雪景观生态研究所(WSL)   客座研究员

2021-2022   美国马里兰大学地球系统科学交叉学科中心   研究助理教授

2017-2022   美国宇航局戈达德太空飞行中心   客座研究员

2017-2020   美国马里兰大学地理系    博士后

2014-2018   美国蒙大拿大学生态系    客座助理教授

2014-2017   瑞士联邦森林雪景观生态研究所    博士后

2013-2014   中国科学院寒区旱区环境与工程研究所    助理研究员

研究方向

全球甲烷循环,多源数据融合,陆面过程模型,全球动态植被模型,生物地球化学循环建模,湿地遥感。

职务

社会任职

承担项目

  1. 2023-2025   优秀青年科学基金项目(海外)
  2. 2023-2025   中国科学院人才项目
  3. 2022-至今    美国Woodwell研究所Permafrost Pathway项目:Machine Learning Based Estimate for Arctic Wetland Methane (PI)
  4. 2019-至今    全球碳计划甲烷项目Global Carbon Project Methane:主要协调人,负责陆面过程模型甲烷估算的集成及协调工作
  5. 2020-2023   美国宇航局CYGNSS项目,Co-PI, Characterizing a critical terrestrial carbon cycle process using inundation extent and dynamics derived from CYGNSS
  6. 2022-2023  美国宇航局SmallSAT项目,Co-PI, Evaluating GHGSat for monitoring natural ecosystem methane fluxes
  7. 2017-2020   美国宇航局极地寒温带脆弱性实验项目: Co-PI, A Model-Data Integration Framework (MoDIF) for ABoVE Phase I research: simulation, scaling and benchmarking for key indicators of Arctic-boreal ecosystem dynamics.
  8. 2017-2021    摩尔基金会项目Moore Foundation Project, 定量评估全球甲烷源汇 Quantifying Sources and Sinks in the Global Methane Cycle
  9. 2014-2017    瑞士联邦理工大学协同项目ETH-CCES Project: Modeling and experiments on land-surface interactions with atmospheric chemistry and climate II (MAIOLICA-II) 陆气交互作用的建模及实验)

获奖及荣誉

代表论著

出版和发表:Google Scholar: Citations=6224, H-index=31 (as of 05/31/2024).

2024

1. East et al. Interpreting the Seasonality of Atmospheric Methane. Geophys. Res. Lett., 51(10), e2024GL108494.

2. Wang et al. The Greenhouse Gas Budget of Terrestrial Ecosystems in East Asia Since 2000. Glob. Biogeochem. Cycles, 38(2), e2023GB007865.

3. Feron et al. Recent increases in annual, seasonal, and extreme methane fluxes in boreal and temperate wetlands. Glob. Change Biol., 30(1), e17131.

2023

4. Zhang et al. Recent intensification of wetland methane feedback. Nat. Clim. Change, 10.1038/s41558-023-01629-0.

5. Fluet-Chouinard et al. Extensive Global Wetland Loss over the Past Three Centuries. Nature, 614(7947), 281-286.

6. Bansal et al. Large increases in methane emissions expected from North America’s largest wetland complex. Sci. Adv., 9(9), eade1112.

7. Watts et al. Carbon uptake in Eurasian boreal forests. Glob. Change Biol., 29, 1870-1889.

8. Feldman et al. Using OCO-2 column CO2 retrievals to estimate biospheric carbon flux anomalies. Atmos. Chem. Phys., 23, 1545-1563.

9. Poulter et al. Simulating Global Dynamic Surface Reflectances for Imaging Spectroscopy Spaceborne Missions: LPJ-PROSAIL. J. Geophys. Res. Biogeosci., 128, e2022JG006935.

10. McNicol et al. Upscaling Wetland Methane Emissions From the FLUXNET-CH4 Eddy Covariance Network. AGU Adv., 4(5), e2023AV000956.

11. Chang et al. Observational constraints reduce model spread but not uncertainty in global wetland methane emission estimates. Glob. Change Biol., 29, 4298-4312.

12. Ito et al. Cold-Season Methane Fluxes Simulated by GCP-CH4 Models. Geophys. Res. Lett., 50(14), e2023GL103037.

13. Poulter et al. Multi-scale observations of mangrove blue carbon ecosystem fluxes: The NASA Carbon Monitoring System BlueFlux field campaign. Environ. Res. Lett.

14. Mannisenaho et al. Global Atmospheric δ13CH4 and CH4 Trends for 2000–2020 using TM5 Model. Atmosphere, 14(7).

15. Albuhaisi et al. High-Resolution Estimation of Methane Emissions from Boreal and Pan-Arctic Wetlands Using Advanced Satellite Data. Remote Sens., 15(13).

16. Feldman et al. A multi-satellite framework to evaluate extreme biosphere cascades: The Western US 2021 drought and heatwave. Glob. Change Biol., 29(13), 3634-3651.

17. Xi et al. Methane Emissions From Land and Aquatic Ecosystems in Western Siberia. J. Geophys. Res. Biogeosci., 128(7), e2023JG007466.

2022

18. Peng et al. Increase in wetland emissions and decrease in atmospheric sink explain high methane growth in 2020. Nature, 612(7940), 477-482.

19. Murray-Tortarolo et al. A Process-Model Perspective on Recent Changes in the Carbon Cycle of North America. J. Geophys. Res. Biogeosci., 127.

20. Xi et al. Gridded maps of wetlands dynamics over mid-low latitudes for 1980–2020 based on TOPMODEL. Sci Data, 9, 347.

21. Zhang et al. Effect of Assimilating SMAP Soil Moisture on CO2 and CH4 Fluxes. Remote Sens., 14(10), 2405.

2021

22. Zhang et al. Anthropogenic emission is the main contributor to the recent growth of atmospheric methane concentrations. Natl. Sci. Rev., nwab200.

23. Stavert et al. Regional trends and drivers of the 2000-2017 global methane budget. Glob. Change Biol., 28, 182-200.

24. Gloor et al. Large Methane Emissions From the Pantanal During Rising Water-Levels. Glob. Biogeochem. Cycle, 35, e2021GB006964.

25. Weir et al. Monitoring the impacts of COVID-19 on carbon dioxide from space. Sci. Adv., 7(45), eabf9415.

26. Li et al. Terrestrial carbon cycle model-data fusion: Progress and challenges. Sci. China Earth Sci., 64.

27. Delwiche et al. FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality. Earth Syst. Sci. Data, 1-111.

28. Knox et al. Environmental controls on global freshwater wetland CH4 fluxes across diurnal to seasonal time scales. Glob. Change Biol., 27, 3582-3604.

29. Zhang et al. Development and evaluation of the global Wetland Area and Dynamics for Methane Modeling dataset (WAD2M). Earth Syst. Sci. Data, 13, 2001-2023.

30. Chang et al. Substantial hysteresis in temperature sensitivity of global wetland methane emissions. Nat. Commun.

2020

31. Poulter et al. A review of global wetland carbon stocks and management challenges. Wetland Carbon and Environmental Management. AGU Books.

32. Zhang et al. Hiatus of wetland methane emissions associated with recent La Niña episodes in the Asian Monsoon region. Clim. Dyn.

33. Pandey et al. Using satellite data to identify methane emission controls of South Sudan's wetlands. Biogeosci.

34. Pazúr et al. Abandonment and Recultivation of Agricultural Lands in Slovakia. Land, 9(9), 316.

35. Sweeney et al. Atmospheric carbon cycle dynamics over the ABoVE domain: Aircraft observations and model simulations. Atmos. Chem. Phys.

36. Tunnicliffe et al. Quantifying sources of Brazil’s CH4 emissions between 2010 and 2018 from satellite data. Atmos. Chem. Phys.

37. Saunois et al. The Global Methane Budget 2000-2017. Earth Syst. Sci. Data, 1-138.

2019

38. Natali et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change, 9, 852-857.

39. Knox et al. FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future Directions. Bull. Amer. Meteor. Soc.

40. Fu et al. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Glob. Change Biol.

41. Stofferahn et al. The Arctic-Boreal vulnerability experiment model benchmarking system. Environ. Res. Lett., 14, 055002.

42. Barba et al. Methane Emissions from Tree Stems: A New Frontier in the Global Carbon Cycle. New Phytol., 222(1), 18-28.

43. Wang et al. Response of soil respiration to nitrogen deposition on the Sanjiang Plain wetland. PLoS One, 14

2018

44. Babst et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev., 197, 1-20.

45. Zhang et al. Enhanced response of global wetland methane emissions to recent El Niño-Southern Oscillation events. Environ. Res. Lett., 13(7):074009.

46. Wang et al. Global patterns of dead and living fine root stocks in forest ecosystems. J. Biogeogr., 1-17.

47. Fisher et al. Missing pieces to modeling the Arctic-Boreal puzzle. Environ. Res. Lett., 13, 020202.

2017

48. Zhang et al. Emerging role of wetland methane emissions in driving 21st century climate change. Proc. Natl. Acad. Sci., 114, 9647-9652.

49. Saunois et al. Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmos. Chem. Phys., 17, 11135-11161.

50. Poulter et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett., 12, 094013.

51. Zhang et al. Converging Climate Sensitivities of European Forests. Ecosystems.

52. Pandey et al. Enhanced methane emissions from tropical wetlands during the 2011 La Niña. Sci. Rep., 7, 45759.

53. Jin et al. Phenology plays an important role in regulating terrestrial ecosystem water-use efficiency. Remote Sens., 9, 664.

友情链接: