人才详细信息
简介
教育背景
2011年1月-2015年1月:博士,单位:德国波茨坦大学 学科:大气物理学
2006年9月- 2010年6月:硕士,单位: 中国科学院地质与地球物理研究所 学科:地球物理学(空间物理)
2002年9月-2006年6月:学士,单位:河北大学
学科:理论物理学
工作经历
2015.3-2015.11: Alfred Wegner Institute, Helmholtz Center for Polar and Marine research, 临时科研岗位
2015.12-2019.6:博士后,中国科学院青藏高原研究所
2019.7-2020.12:特别研究助理,中国科学院青藏高原研究所
2021.01-至今:副研究员,中国科学院青藏高原研究所
研究方向
职务
社会任职
承担项目
主持基金项目:
国家自然科学基金青年科学基金项目,41705084,青藏地区中小尺度地形湍流拖曳力在WRF中的参数化,2018/01-2020/12,25.0万元,在研,主持。
参与基金项目:
国家自然科学基金重点项目,91537210,355.0万元,青藏高原水汽交换过程的观测与模拟,2016/01-2019/12,结题,骨干。
国家自然科学基金面上项目,41871280,羌塘高原卫星降水产品校正与降水量估算,2019/01- 2022/12, 在研,骨干。
国家自然科学基金面上项目,41871071青藏高原冰川物质平衡变化空间格局的能量平衡机制研究,2019/01-2022/12, 在研,骨干。
国家重大科技专项(青藏高原二次科考),Y9Jq0263,纳木错流域降水多源观测研究,237.6万元,参与,骨干。
获奖及荣誉
代表论著
发表文章:
1. Tang W., J. Qin, K. Yang, F. Zhu and X. Zhou (2021) Does ERA5 outperform satellite products in estimating atmospheric downward longwave radiation at the surface? Atmospheric Research, 252(7):105453
2. Yao X., K. Yang, X. Zhou, et al., (2021) Surface friction contrast between water body and land enhances precipitation downwind of a large lake in Tibet. Climate Dyanamics, doi: 10.1007/s00382-020-05575-x
3. Jiang Y., K. Yang, C. Shao, X. Zhou, L. Zhao et al. (2021) A downscaling approach for constructing high-resolution precipitation dataset over the Tibetan Plateau from ERA5 reanalysis. Atmospheric Research, 256(2018-July):105574
4. Zhou X., K. Yang, L. Ouyang, et al. (2021) Added value of kilometer-scale modeling over the third pole region: a CORDEX-CPTP pilot study. Climate Dynamics, doi: 10.1007/s00382-021-05653-8
5. Chen Y., S. Sharma, X. Zhou et al. (2021) Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmospheric Research, 250(105365):1-12.
6. Ren Y., K. Yand, H. Wang, L. Zhao, Y. Chen, X. Zhou, K. Yang. (2021) The South Asia Monsoon Break Promotes Grass Growth on the Tibetan Plateau. JGR-Biogeosciences, 126(3).
7. Zhou X.(*#), J. Qin, H.D. Li, et al. (2020) A statistical method to construct wind speed at turbine height for study of wind power in China. Theoritical and Applied Climatology, doi:10.1007/s00704-020-03201-8
8. Huang B., X. Hu, GA. Fugistad, X. Zhou, W. Zhao et al. (2020) Predominant regional biophysical cooling from recent land cover changes in Europe. Nature Communications, doi: 10.1038/s41467-020-14890-0
9. Sharma S., Y. Chen, X. Zhou, et al. (2020) Evaluation of GPM-Era Satellite precipitation products on the southern slopes of the central Himalayas against rain gauge data, Remote Sensing, doi: 10.3390/rs12111836
10. Ouyang L., H. Lu, K. Yang, Y. Chen, Z. La, X. Zhou et al. (2020) Ground‐based observations reveal unique valley precipitation patterns in the central Himalaya. J Geophys Res-Atmos, doi: 10.1029/2019JD031502
11. Li D., K. Yang, W. Tang, X. Li, X. Zhou et al. (2020) Characterizing precipitation in high altitudes of the western Tibetan Plateau with a focus on major glacier areas. International Journal of Climatology, doi: 10.1002/joc.6509
12. Wang Y., K. Yang, X. Zhou et al. (2020) Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF?simulated precipitation in central Himalaya. Climate Dynamics, doi: 10.1007/s00382-019-05080-w
13. Zhou X.(#), K. Yang(*), A. Beljaars, et al. (2019) Dynamical Impact of Parameterized Turbulent Orographic Form Drag on the Simulation of Winter Precipitation over the Western Tibetan Plateau. Climate Dynamics, doi:10.1007/s00382-019-04628-0
14.骆琪, 阳坤, 陈莹莹, 周旭. (2019) 利用土壤水分数据估计高寒区土壤有机碳含量的方法研究. 中国科学-地球科学(中英双刊), doi: 10.1360/SSTe-2019-0019
15. Zhang R., F. Tian, Q. Xu, X. Zhou, X. Liu, X. Cao. (2019) Representation of modern pollen assemblage to vertical variations of vegetation and climate in the Yadong area, eastern Himalaya. Quaternary International, doi:10.1016/j.quaint.2019.11.036
16. Wang Y., K. Yang, X. Zhou et al. (2019) The formation of a dry-belt in the north side of central Himalaya Mountains. Geophysical Research Letters, doi:10.1029/2018GL081061
17. Li H.D., Y. Zhou, X. Wang, X. Zhou et al (2019) Quantifying urban heat island intensity and its physical mechanism using WRF/UCM, Science of the total enviroment, doi:10.1016/j.scitotenv.2018.10.025
18. Zhou X. (*#), H. Matthes, A. Rinke et al. (2018), Simulating Arctic 2-m air temperature and its linear trends using the HIRHAM5 regional climate model, Atmospheric Research, doi:10.1016/j.atmosres.2018.10.022
19. Zhou X. (*#), K. Yang, and Y. Wang (2018), Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau, Climate Dynamics, doi:10.1007/s00382-017-3677-y
20. Zhou X.(*#), A. Beljaars, and Y. Wang et al. (2017), Evaluation of WRF Simulations with Different Selections of Sub-grid Orographic Drag over the Tibetan Plateau, J Geophys Res-Atmos, doi:10.1002/2017JD027212
21. Matthes H., A. Rinke, X. Zhou et al. (2017) Uncertainties in coupled regional Arctic climate simulations associated with the used land surface model, J Geophys Res-Atmos, doi:10.1002/2016JD026213
22. Zhou X. (*#), H. Matthes, A. Rinke et al. (2014), Evaluation of Arctic land snow cover characteristics, surface albedo and temperature during the transition seasons from regional climate model simulations and satellite data, Adv Meteorol, doi:10.1155/2014/604157
23.周旭 ( *#), 万卫星,乐新安等(2010): 基于CHAMP卫星观测数据对中高层大气总质量密度的经验正交分析, 空间学报, p353, 2010