人才详细信息
简介
研究方向
水循环、微波遥感
职务
社会任职
2020 -至今 《遥感学报》编委
2018–至今 《遥感技术与应用》青年编委
2020 《Remote Sensing》专刊特邀编委
承担项目
基金委面上项目“青藏高原土壤未冻水的微波遥感监测和数据同化方法研究”,批准号41871273,执行期间:2019.1-2022.12,主持
中科院A类先导项目子任务“冻土退化导致的陆面过程协同变化”,批准号XDA2010010302,执行期间:2018.3-2023.2,主持
中科院率先行动“引才计划”青年俊才(C类)项目,执行期间:2018.4-2023.3,主持
获奖及荣誉
代表论著
第一作者及通讯作者:
1. Sun, S., Zheng, D.*, Liu, S.*, Xu, Z., Xu, T., Zheng, H., and Yang, X. (2022). Assessment and improvement of Noah-MP for simulating water and heat exchange over alpine grassland in growing season. Science China Earth Sciences, 65, https://doi.org/10.1007/s11430-021-9852-2.
2. Zheng, D., Li, X., Wen, J., Hofste, J.G., van der velde, R., Wang, X., Wang, Z., Bai, X., Schwank, M., and Su, Z. (2021a). Active and Passive Microwave Signatures of Diurnal Soil Freeze-Thaw Transitions on the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 60, doi: 10.1109/TGRS.2021.3092411.
3. Zheng, D., Li, X., Zhao, T., Wen, J., van der Velde, R., Schwank, M., Wang, X., Wang, Z., and Su, Z. (2021b). Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 4080-4093.
4. Zhang, P., Zheng, D.*, van der Velde, R., Wen, J., Zeng, Y., Wang, X., Wang, Z., Chen, J., and Su, Z.* (2021). Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset. Earth Syst. Sci. Data, 13, 3075–3102.
5. Bai, X., Zheng, D.*, Wen, J., Wang, X., and van der velde, R. (2021). Using a Discrete Scattering Model to Constrain Water Cloud Model for Simulating Ground-Based Scatterometer Measurements and Retrieving Soil Moisture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9424–9434.
6. Wu, X., and Zheng, D.* (2021). Surface Roughness Effect on L-Band Multiangular Brightness Temperature Modeling and Soil Liquid Water Retrieval of Frozen Soil. IEEE Geoscience and Remote Sensing Letters, 18(9), 1615-1619.
7. Su, J., Li, X., Ren, W., Lü, H.*, and Zheng, D.*(2021). How reliable are the satellite-based precipitation estimations in guiding hydrological modelling in South China? Journal of Hydrology, 602, 126705.
9. Cao, B., Gruber, S., Zheng, D.*, and Li, X.* (2020). The ERA5-Land Soil-Temperature Bias in Permafrost Regions. The Cryosphere, 14, 2581-2595.
10. Zheng, D., Li, X., Wang, X., Wang, Z., Wen, J., van der Velde, R., Schwank, M., and Su, Z. (2019). Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau. Remote Sensing of Environment, 226, 16-25.
11. Zheng, D., Wang, X., van der Velde, R., Schwank, M., Ferrazzoli, P., Wen, J., Wang, Z., Colliander, A., Bindlish, R., and Su, Z. (2019). Assessment of Soil Moisture SMAP Retrievals and ELBARA-III Measurements in a Tibetan Meadow Ecosystem. IEEE Geoscience and Remote Sensing Letters, 16(9), 1407-1411.
12. Zheng, D., Wang, X., van der Velde, R., Ferrazzoli, P., Wen, J., Wang, Z., Schwank, M., Colliander, A., Bindlish, R., and Su, Z. (2018). Impact of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the third pole environment. Remote Sensing of Environment, 209, 633-647.
13. Zheng, D., van der Velde, R., Wen, J., Wang, X., Ferrazzoli, P., Schwank, M., Colliander, A., Bindlish, R., and Su, Z. (2018). Assessment of the SMAP Soil Emission Model and Soil Moisture Retrieval Algorithms for a Tibetan Desert Ecosystem. IEEE Transactions on Geoscience and Remote Sensing, 56, 3786-3799.
14. Zheng, D., van der Velde, R., Su, Z., Wen, J., Wang, X., and Yang, K. (2018). Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers. Journal of Hydrology, 563, 382-394.
15.Zheng, D., Wang, X., van der Velde, R., Zeng, Y., Wen, J., Wang, Z., Schwank, M., Ferrazzoli, P., and Su, Z. (2017).L-Band Microwave Emission of Soil Freeze-Thaw Process in the Third Pole Environment. IEEE Transactions on Geoscience and Remote Sensing, 55(9), 5324-5338.
16. Zheng, D., van der Velde, R., Su, Z., Wen, J., and Wang, X. (2017). Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river. Journal of Geophysical Research: Atmosphere, 122, 1488-1504.
17. Zheng, D., van der Velde, R., Su, Z., Wen, J., Wang, X., and Yang, K. (2017). Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem. Journal of Hydrometeorology, 18(6), 1749-1763.
18. Zheng, D., van der Velde, R., Su, Z., Wen, J., Wang, X., Booij, M. J., Hoekstra, A. Y., Lv, S., Zhang, Y., and Ek, M. B. (2016). Impacts of Noah model physics on catchment-scale runoff simulations. Journal of Geophysical Research: Atmosphere, 121, 807-832.
19. Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M. J., Hoekstra, A. Y., and Chen, Y. (2015a). Augmentations to the Noah model physics for application to the Yellow River source area. Part I: Soil water flow. Journal of Hydrometeorology, 16(6), 2659-2676.
20. Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M. J., Hoekstra, A. Y., and Chen, Y. (2015b). Augmentations to the Noah model physics for application to the Yellow River source area. Part II: Turbulent heat fluxes and soil heat transport. Journal of Hydrometeorology, 16(6), 2677-2694.
21. Zheng, D., van der Velde, R., Su, Z., Wen, J., Booij, M. J., Hoekstra, A. Y., and Wang, X. (2015). Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP. Water Resources Research, 51, 5735-5755.
22. Zheng, D., van der Velde, R., Su, Z., Booij, M. J., Hoekstra, A. Y., and Wen, J. (2014). Assessment of roughness length schemes implemented within the Noah land surface model for high-altitude regions. Journal of Hydrometeorology, 15(3), 921-937.
23. 杨奥莉, 郑东海*, 文军, 等(2021). 青藏高原L 波段微波辐射观测与土壤水分反演研究进展. 遥感技术与应用, 36(5), 983-996.
24. 陈家利, 郑东海*, 庞国锦, 李新(2020). 基于SMAP亮温数据反演青藏高原玛曲区域土壤未冻水. 遥感技术与应用, 35(01), 48-57.
其他合作论文(近三年):
2. Zhou, Y., Li, X., Zheng, D., Zhang, X., Wang, Y., Ren, S., and Guo, Y. (2022). Decadal Changes in Glacier Area, Surface Elevation and Mass Balance for 2000–2020 in the Eastern Tanggula Mountains Using Optical Images and TanDEM-X Radar Data. Remote Sensing, 14(3), 506.
3. Fu, X., Jiang, X., Yu, Z., Ding, Y., Lü, H., and Zheng, D. (2022). Understanding the key factors that influence soil moisture estimation using the unscented weighted ensemble Kalman filter. Agricultural and Forest Meteorology, 313, 108745.
4. Zhang, L., Li, X., Zheng, D., Zhang, K., and Ge, Y. (2021). Merging multiple satellite-based precipitation products and gauge observations using a novel double machine learning approach. Journal of Hydrology, 594(6), 125969.
5. Zhang, Y., Ryu, D., and Zheng, D. (2021). Using Remote Sensing Techniques to Improve Hydrological Predictions in a Rapidly Changing World. Remote Sensing, 13(19), 3865.
6. Liu, J., Chai, L., Dong, J., Zheng, D., et al. (2021). Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method. Remote Sensing of Environment, 255, 112225.
7. Cao, B., Li, X., Feng, M., and Zheng, D. (2021). Quantifying overestimated permafrost extent driven by rock glacier inventory. Geophysical Research Letters, 48, e2021GL092476.
8. Ma, H., Zeng, J., Zhang, X., Fu, P., Zheng, D., Wigneron, J.P., Chen, N., and Niyogi, D. (2021). Evaluation of six satellite- and model-based surface soil temperature datasets using global ground-based observations. Remote Sensing of Environment, 264, 112605.
9. Zhao, L., Yang, K., He, J., Zheng, H., and Zheng, D. (2021). Potential of Mapping Global Soil from SMAP Soil Moisture Product: A Pilot Study. IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2021.3119667.
10. Sun, J., Chen, Y., Yang, K., Lu, H., and Zheng, D. (2021). Influence of organic matter on soil hydrothermal processes in the tibetan plateau: observation and parameterization. Journal of Hydrometeorology, 22, 2659-2674.
11. Hofste, J. G., van der Velde, R., Wen, J., Wang, X., Wang, Z., Zheng, D., van der Tol, C., and Su, Z. (2021). Year-long, broad-band, microwave backscatter observations of an alpine meadow over the Tibetan Plateau with a ground-based scatterometer. Earth Syst. Sci. Data, 13, 2819–2856.
12. Su, Z., Ma, Y., Chen, X., Dong, X., Du, J., Han, C., He, Y., Hofste, J.G., Li, M., Li, M., Lv, S., Ma, W., Polo, M.J., Peng, J., Qian, H., Sobrino, J., van der Velde, R., Wen, J., Wang, B., Wang, X., Yu, L., Zhang, P., Zhao, H., Zheng, H., Zheng, D., Zhong, L., Zeng, Y. (2021). Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE). Remote Sens., 2021, 13(18), 3661.
13. Lu, H., Zheng, D., Yang, K., and Yang, F. (2020). Last Decade Progress in Understanding and Modeling the Land Surface Processes on the Tibetan Plateau. Hydrology and Earth System Science, 24, 5745–5758.
14. Su, Z., Wen, J., Zeng, Y., Zhao, H., Lv, S., van der Velde, R., Zheng, D., et al. (2020). Multiyear in-situ L-band microwave radiometry of land surface processes on the Tibetan Plateau. Scientific Data, 7, 317.
15. Yang, K., Chen, Y., He, J., Zhao, L., Lu, H., Qin, J., Zheng,D.,andLi, X. (2020).Development of a daily soil moisture product for the period of 2002–2011 in Chinese mainland.Science China Earth Sciences, 63, 1113-1125.
16. 李新, 袁林旺, 裴韬, 黄昕, 刘广, 郑东海 (2021). 信息地理学学科体系与发展战略要点. 地理学报, 76(9), 2094-2103.
17. 王作亮, 文军, 刘蓉, 李振朝, 郑东海, 等(2020). 基于地基微波辐射计数据评估不同土壤介电模型反演土壤湿度的适用性. 遥感技术与应用, 35(1): 97-110.
18. 李新, 勾晓华, 王宁练, 盛煜, 金会军, 祁元, 宋晓谕, 侯扶江, 李育, 赵长明, 邹松兵, 王宏伟, 郑东海, 陈莹莹, 牛晓蕾 (2019). 祁连山绿色发展: 从生态治理到生态恢复. 科学通报, 64: 2928-2937.
更多论文见以下个人网页:
ResearchGate: https://www.researchgate.net/profile/Donghai_Zheng