内网登录 | ARP登录 | 邮箱登录 | 中国科学院 | 网站地图 | 联系我们
     ENGLISH

人才详细信息

姓名:方小敏
性别:
学历:博士
专家类别:院士/杰青/研究员
电话:
传真:010-8409 7079
电子邮箱:fangxm@tpestations.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

1983.6 兰州大学地质学学士学位
1983.7 - 1987.12 兰州大学地质地理系助教
1987.12 兰州大学自然地理学硕士学位
1988.1 - 1990.2 兰州大学地理科学系讲师
1990.3 - 1992.9 英国Leicester大学地理系中英联培博士生(环境演变)
1992.9 中英(兰大-Leicester大学)联培自然地理学博士学位
1992.12 - 1995.11 兰州大学地理科学系副教授、研究室主任
1995.12 – 2004.12 兰州大学地理科学系教授,1998年后为博士生导师和资源环境学院院长助理, 1999年以来为中国第四纪冰川与环境研究中心主任和兰州大学西部开发研究院常务副院长,2000年后为中国西部环境教育部重点实验室副主任(02年后为主任)和中科院地球环境研究所研究员及黄土与第四纪地质国家重点实验室副主任。
2005.1 – 现在 中科院青藏高原研究所 研究员、博士生导师,盆地与资源环境研究中心主任;兼任兰州大学翠英学者特聘教授。
1996.3 - 9 美国密歇根大学地质系高级访问学者
1997.1 - 1998.2 日本学术振兴会(JSPS)特别研究员
2001.10-2002.3 美国密歇根大学地质系、里若(Reno)大学沙漠研究所、柯罗拉多大学地质系、加州大学圣.巴巴拉分校和洛杉矶分校地质系及加州理工大学合作访问

研究方向

青藏高原隆起与环境变化

职务

社会任职

国际第四纪联合会(INQUA)/国际土壤学会(ISSS)古土壤委员会古土壤与古气候变化工作组主席(1995- 2007)、新构造委员会山地隆升与气候变化工作组主席(1999-2007)和中国第四纪科学研究会理事、第五届中国青藏高原研究会常务理事(2008-2011)、中国地质学会大陆地壳与地幔研究分会委员、副秘书长(2009-)、科学通报、地质科学、海洋地质杂志社编委和Geoscience Frontiers副主编等。

承担项目

1. 2010.1-2023.12  自然科学基金面上项目《西宁盆地早始新世气候最适宜期古气候环境变化》(编号41972195)负责人。
2. 2019.1-2023.12  第二次青藏高原科学考察项目之专题7 《高原风化剥蚀历史及气候环境效应》(编号2019QZKK0707) 专题负责人。 
3. 2018.3-2021.3  中国科学院战略性先导专项A 《季风区古地理重建与古环境演化》(编号:XDA20070201)子课题负责人。 
4. 2017.1-2021.12  国家自然科学基金委重点国际合作项目《青藏高原南北晚新生代古气候记录对比与印度季风-内陆干旱耦合系统的演化》(批号:41620104002),负责人。
5. 2013.1-2017.12  国家973重大科学研究计划项目《中国西部大陆剥蚀风化与青藏高原隆升和全球变化的关系》(编号:2013CB956400),首席科学家。
6. 2012.10-2017.9  中国科学院战略性先导科技专项(B类)课题12《高原隆升与风化剥蚀及其气候效应》(编号:XDB03020400),负责人。
7. 2011.1-2016.12  国家自然科学基金委创新研究群体科学基金《青藏高原北部气候与构造相互作用》(第一期批号:41021001;第二期批号41321061),学术带头人。

获奖及荣誉

1995年度原国家教委跨世纪优秀人才计划入选者

1999年度国家杰出青年基金

1995年首届“中国青藏高原青年科技奖” 获得者

1997年人事部“千百万人才工程”1-2层面入选者

2001年获“宝钢教育基金优秀教师奖”。

2010年获国家基金委创新研究群体科学基金学术带头人。

1997年《青藏高原东北缘及邻区(古)土壤与自然环境演化》项目获“甘肃省科技进步奖三等奖”, 本人排名第一

1998年《青藏高原隆起过程与我国自然环境形成演化研究》项目获“国家教育部科技进步奖三等奖” 本人排名第二

2000年《青藏高原东部及邻区高分辨率黄土与季风气候演化》项目获“中国高校自然科学奖”一等奖,本人排名第一

2004年《青藏高原隆升过程与甘肃大地貌形成》项目获“甘肃省科技进步奖”二等奖,本人排名第一。

2007年《中国西北季风边缘区晚第四纪气候与环境变化》项目获“国家自然科学奖”二等奖,本人排名第四

2011年《晚中新世以来青藏高原东北部隆升与环境变化》项目获“国家自然科学奖”二等奖,本人排名第一 

代表论著

1.Fang, X.M., G. Dupont-Nivet, Wang, C.S., Song, C.H., Meng, Q.Q., Zhang, W.L., Nie, J.S., Zhang, T., Chen, Y., 2019. Low central Tibet before the Early Miocene. Science Advance,6, eaba7298. 
2. Fang, X.M.*, An, Z.S.*, Zan, J.B., S.C. Clemens, Yang, S.L., Han, W.X., 2020. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. PNAS, 117 (40), 24,729-24,734.
3. Fang, X.M., Galy, A., Yang, Y.B., Zhang, W.L., Ye, C.C., Song, C.H., 2019. Temperature forcing Paleogene chemical weathering intensity in the northern Tibet Plateau. Geology, 47, 992-996. [PDF]
4. Fang, X.M., Fang, Y.H., Zan, J.B., Zhang, W.L., Song, C.H., Appel, E., Meng, Q.Q., Miao, Y.F., Dai, S., Lu, Y. and Zhang, T. 2019. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution. Earth Science Review, 190, 460-485.[PDF]
5. Mao, Z.Q., Meng, Q.Q.*, Fang, X.M.*, Zhang, T., Wu, F.L., Yang, Y.B., Zhang, W.L., Zan, J.B., Tan, M.Q. 2019. Recognition of tuffs in the middle-upper Dingqinghu Fm., Lunpola Basin, central Tibetan Plateau: Constraints on stratigraphic age and implications for paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 525, 44-56.[PDF]
6. Ruan, X.B., Yang, Y.B.*, Galy, A., Fang, X.M.*, Jin, Z.D., Zhang, F., Yang, R.S., Deng, L., Meng, Q.Q., Ye, C.C., Zhang, W.L. 2019. Evidence for early (≥12.7 Ma) eolian dust impact on river chemistry in the northeastern Tibetan Plateau. Earth and Planetary Science Letters. 515, 79-89.[PDF]
7. Teng, X.H., Fang, X.M.*, Kaufman, A.J., Liu, C.L., Wang, J.Y., Zan, J.B.,Yang, Y.B., Wang, C.L., Xu, H.M., Schulte, R.F., Piatak, N.M. 2019. Sedimentological and mineralogical records from drill core SKD1 in the Jianghan Basin, Central China, and their implications for late Cretaceous–early Eocene climate change. J. Asian Earth Sci.,182, 1-14.[PDF]
8. Xie, Y.L., Wu, F.L.*, Fang, X.M.*, 2019. Middle Eocene East Asian monsoon prevalence over southern China: Evidence from palynological records. Global and Planetary Change, 175, 13-26.[PDF]
9. Yang, R.S., Yang, Y.B., Fang, X.M.*, Ruan, X.B., Galy, A., Ye, C.C., Meng, Q.Q and Han, W.X., 2019. Late Miocene intensified tectonic uplift and climatic aridification on the northeastern tibetan plateau: evidence from clay mineralogical and geochemical records in the Xining Basin. Geochemistry, Geophysics, Geosystems, 20, 829-851.[PDF]
10. Lu, Y.*, Fang, X.M.*, Friedrich, O., Song, C.H., 2018. Characteristic grain-size component - A useful process-related parameter for grain-size analysis of lacustrine clastics? Quaternary International, 479, 90-99.[PDF]
11. Ye, C., Yang, Y.*, Fang, X.*, Hong, H., Zhang, W., Yang, R., Zhang, W.L. 2018. Mineralogical and geochemical discrimination of the occurrence and genesis of palygorskite in Eocene sediments on the northeastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 19, 567-581.[PDF]
12. Ye, C., Yang, Y., Fang, X.*, Hong, H., Wang, C., Yang, R., Zhang, W., 2018. Chlorite chemical composition change in response to the Eocene-Oligocene climate transition on the northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 512, 23-32.[PDF]
13. Zan, J.B., Fang, X.M.*, Zhang, W.L., Yan, M.D. and Zhang, D.W. 2018. A new record of late Pliocene-early Pleistocene aeolian loess–red clay deposits from the western Chinese Loess Plateau and its palaeoenvironmental implications. Quaternary Science Reviews, 186, 17-26.[PDF]
14. Yang, R.S., Fang, X.M.*, Meng, Q.Q., Zan, J.B., Zhang, W.L., Deng, T., Ruan, X.B., Yang, L.Y. and Yang, Y.B., 2017. Paleomagnetic Constraints on the Middle Miocene‐Early Pliocene Stratigraphy in the Xining Basin, NE Tibetan Plateau, and the Geologic Implications. Geochemistry, Geophysics, Geosystems, 18, 3741-3757.[PDF]
15. Wu, F.L., Fang, X.M.*, Meng, Q.Q., Zhao, Y., Tang, F.J., Zhang, T., Zhang, W.L. and Zan, J.B., 2017. Magneto- and litho-stratigraphic records of the Oligocene-Early Miocene climatic changes from deep drilling in the Linxia Basin, Northeast Tibetan Plateau. Global and Planetary Change, 158, 36-46.[PDF]
16. Fang,X.M., Wang, J.Y., Zhang, W.L., Zan, J.B., Song, C.H., Yan, M.D., Appel, E.,. Zhang, T., Wu, F.L., Yang, Y.B. and Lu, Y., 2016. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research. Global and Planetary Change, 145, 78–97. [PDF]
17. Fang,X.M., Song, C., Yan, M., Zan, J., Liu, C., Sha, J., Zhang, W., Zeng, Y., Wu, S. and Zhang, D., 2016. Mesozoic litho- and magneto-stratigraphic evidence from the central Tibetan Plateau for megamonsoon evolution and potential evaporites. Gondwana Research, 37, 110–129. [PDF]
18. Fang,X.M., Li, M.H., Wang, Z.R., Wang, J.Y., Li, J., Liu, X.M. and Zan, J.B., 2016. Oscillation of mineral compositions in Core SG-1b, western Qaidam Basin, NE Tibetan Plateau. Scientific Reports, DOI: 10.1038. [PDF]
19. Fang, X.M., Zan, J.B., Appel, E., Lu, Y., Song, C.H., Dai, S. and Tuo, S.B., 2015. An Eocene–Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys. J. Int., 201, 78–89. [PDF]
20. Li, J.J., Fang, X.M.*, Song, C.H., Pan, B.T., Ma, Y.Z. and Yan, M.D., 2014. Late Miocene–Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quaternary Research, 81, 400-423. [PDF]
21. Fang, X.M., Liu, D.L., Song, C.H., Dai, S. and Meng, Q.Q. 2013. Oligocene slow and Miocene-Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: evidence from high-resolution magnetostratigraphy and tectonosedimentology. Geol. Soc., London, Special Publications, 373, 149-171, doi: 10.1144/SP373.5. [PDF]
22. Fang, X.M., Zhang, W.L., Meng, Q.Q., Gao, J.P., Wang, X.M., King, J., Song, C.H., Dai, S. Miao, Y.F., 2007. High resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Plant. Sci. Lett., 258, 293–306. [PDF]
23. Dai, S., X. Fang*, G. Dupont-Nivet, C. Song, J. Gao, W. Krijgsman, C. Langereis, and W. Zhang, 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J. Geophys. Res., 111, B11102, doi:10.1029/2005JB004187. [PDF]
24. Fang, X. M., M.D. Yan, R. Van der Voo, D. K. Rea, C.H. Song, J. M Pares, J.S. Nie, J.P. Gao and S. Dai, 2005. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geol. Soc. Am. Bull., 117, 1208–1225. [PDF]
25. Fang, X.M., Zhao, Z.J., Li, J.J., Yan, M.D., Pan, B.T., Song, C.H. and Dai, S., 2005. Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift. Sci. Chin. (D), 48, 1040-1051]. [PDF]
26. Fang, X.M., Han, Y.X., Ma, J.H., Song, L.C. and Yang, S.L., 2004. Dust storms and loess accumulation on the Tibetan Plateau: a case study of dust event on 4 March 2003 in Lhasa. Chin. Sci. Bull., 49, 953-960. [PDF]
27. Fang, X.M., Garzione, C., Van der Voo, R., Li, J.J. and Fan, M.J., 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet. Sci. Lett., 210(3-4): 545-560. [PDF]
28. Fang, X.M., Lianqing Lü, Joseph A. Mason, Shengli Yang, Zhisheng An and Jijun Li, 2003. Pedogenic response to millennial summer monsoon enhancements on the Tibetan Plateau. Quat. Internat.,106/107, 79-88. [PDF]
29. Fang, X.M., Shi, Z.T., Yang, S.L., Yan, M.D., Li, J.J. and Jiang, P.A., 2002. Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern Xinjiang. Chin. Sci. Bull., 47(16), 1381-1387. [PDF]
30. Fang, X.M., Lü L.Q., Yang, S.L., Li, J.J., An, Z.S., Jiang, P.A. and Chen, X.L., 2002. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in West China. Sci. Chin. (D), 45(4), 289-299. [PDF]
31. Fang, X.M., Li, J.J., Banerjee, S. K., Jackson, M., Oches, E. and Van der Voo, R., 1999. Millennial-scale climatic change during the last interglacial period: Superparamagnetic sediment proxy from paleosol S1, western Chinese Loess Plateau. Geophys. Res. Lett. , 26(16), 2485-2488. [PDF]
32. Fang, X.-M., Ono, Y., Fukusawa, H., Pan, B.-T., Li, J.-J., Guan, D.-H., Oi, K., Tsukamoto, S., and Torii, T., 1999. Asian summer monsoon instability during the past 60,000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau. Earth Planet. Sci. Lett., 168, 219-232.. [PDF]
33. Fang, X.-M., Li, J.-J. and Van der Voo, R., 1999.Rock magnetic and grain size evidence for intensified Asian atmospheric circulation since 800,000 yrs B.P. related to Tibetan uplift. Earth Planet. Sci. Lett., 165, 129-144. [PDF]
34. Li, J.-J. and Fang, X.-M., 1999. Uplift of Tibetan Plateau and environmental Changes. Chin. Sci. Bull., 44(23), 2117-2124.[PDF]
友情链接: